4-3 LOAD-EFFECTIVE ADDRESS 101

EXAMPLE 4-2

.MODEL SMALL
.STACK 200H ;set stack size

If the stack is not specified by using either method, a warning will appear when the program is linked. The
warning may be ignored if the stack size is 128 bytes or fewer. The system automatically assigns (through DOS)
at least 128 bytes of memory to the stack. This memory section is located in the program segment prefix (PSP),
which is appended to the beginning of each program file. If you use more memory for the stack, you will erase in-
formation in the PSP that is critical to the operation of your program and the computer. This error often causes the
computer program to crash. If the TINY memory model is used, the stack is automatically located at the very end
of the segment, which allows for a larger stack area.

4-3  LOAD-EFFECTIVE ADDRESS

There are several load-effective address instructions in the microprocessor instruction set. The LEA instruction
loads any 16-bit register with the address, as determined by the addressing mode selected for the instruction. The
LDS and LES variations load any 16-bit register with the offset address retrieved from a memory location, and
then load either DS or ES with a segment address retrieved from memory.

LEA

The LEA instruction loads a 16- or 32-bit register with the offset address of the data specified by the operand. As
the first example in Table 4-9 shows, the operand address NUMB is loaded into register AX, not the contents of
address NUMB.

By comparing LEA with MOV, it is observed that LEA BX,[DI] loads the offset address specified by [DI]
(contents of DI) into the BX register; MOV BX,[DI] loads the data stored at the memory location addressed by
[DI] into register BX.

Earlier in the text, several examples are presented by using the OFFSET directive. The OFFSET directive
performs the same function as an LEA instruction if the operand is a displacement. For example, the MOV
BX,OFFSET LIST performs the same function as LEA BX,LIST. Both instructions load the offset address of
memory location LIST into the BX register. See Example 4-3 for a short program that loads SI with the address of
DATAI1 and DI with the address of DATAZ2. It then exchanges the contents of these memory locations. Note that
the LEA and MOV with OFFSET instructions are both the same length (three bytes).

ABLE 4-9 |oad-effective address instructions.

Assembly Language Operation
LEA AX,NUMB Loads AX with the address of NUMB
LEA EAX,NUMB Loads EAX with the address of NUMB
LDS DI,LIST Loads DS and DI with the 32-bit contents of data segment memory location LIST
LDS EDI,LIST Loads DS and EDI with the 48-bit contents of data segment memory location LIST

LES BX,CAT Loads ES and BX with the 32-bit contents of data segment memory location CAT




102 CHAPTER 4 DATA MOVEMENT WNSTRUCTIONS

EXAMPLE 4-3
.MODEL SMALL ;select SMALL model
0000 .DATA ;start of DATA segment
0000 2000 DATAL DW 2000H ;define DATAl
0002 3000 DATA2 DW 3000H ;define DATA2
0000 .CODE ;start of CODE segment
.STARTUP ;start of program
0017 BE 0000 R LEA SI,DATAl ;address DATAl with SI
001A BF 0002 R MOV DI,OFFSET DATA2 ;address DATA2 with DI
001D 8B 1C MOV BX, [SI] ;exchange DATAl with DATA2
001F 8B 0D MOV CX, [DI]
0021 89 0C MOV [SI],CX
0023 89 1D MOV [DI],BX
.EXIT ;exit to DOS
END ;end of file

But why is the LEA instruction available if the OFFSET directive accomplishes the same task? First,
OFFSET only functions with simple operands such as LIST. It may not be used for an operand such as [DI],
LIST [SI], and so on. The OFFSET directive is more efficient than the LEA instruction for simple operands.
It takes the microprocessor longer to execute the LEA BX,LIST instruction than the MOV BX,OFFSET
LIST. The 80486 microprocessor, for example, requires two clocks to execute the LEA BX,LIST instruction
and only one clock to execute MOV BX,OFFSET LIST. The reason that the MOV BX,OFFSET LIST in-
struction executes faster is because the assembler calculates the offset address of LIST, while the micro-
processor calculates the LEA instruction. The MOV BX,0OFFSET LIST instruction is actually assembled as
a move immediate instruction and is more efficient.

Suppose that the microprocessor executes an LEA BX,[DI] instruction and DI contains a 1000H. Be-
cause DI contains the offset address, the microprocessor transfers a copy of DI into BX. A MOV BX,DI in-
struction performs this task in less time and is often preferred to the LEA BX,[DI} instruction.

Another example is LEA SL[BX + DI]. This instruction adds BX to DI and stores the sum in the SI
register. The sum generated by this instruction is a modulo-64K sum. If BX = 1000H and DI = 2000H, the
offset address moved into SI is 3000H. If BX = 1000H and DI = FFOOH, the offset address is OFOOH instead
of 10FOOH. Notice that the second result is a modulo-64K sum of OFOOH. (A modulo-64K sum drops any
carry out of the 16-bit result.)

LDS, LES,

The LDS and LES instructions load any 16-bit register with an offset address, and the DS, ES segment reg-
ister with a segment address. These instructions use any of the memory-addressing modes to access a 32-bit
section of memory that contains both the segment and offset address. The 32-bit section of memory contains
a 16-bit offset and segment address.

Figure 4—15 illustrates an example LDS BX,[DI] instruction. This instruction transfers the 32-bit
number, addressed by DI in the data segment, into the BX and DS registers. The LDS and LES instructions
obtain a new far address from memory. The offset address appears first, followed by the segment address.
This format is used for storing all 32-bit memory addresses.

4-4 STRING DATA TRANSFERS

There are three string data transfer instructions: LODS, STOS, and MOVS. Each string instruction allows data trans-
fers that are either a single byte, or word (or if repeated, a block of bytes, or words). Before the string instructions are
presented, the operation of the D flag-bit (direction), DI, and SI must be understood as they apply to the string in-
structions.



4-4 STRING DATA TRANSFERS 103

Data segment

1FFFF
EAX
EBX 6 F2A .
\—/\__\
30 11003
ESP 00 11002
EBP 12 11001
ESI 7A 11000 <———
EDI 1000 \,\,\J
~——TT
1000
CS
Y
bs| 1000 M .
10000 10000
11000

FIGURE 4-15 The LDS BX,[DI] instruction loads register BX from addresses 11000H and
11001H and register DS from locations 11002H and 11003H. This instruction is shown at the
point just before DS changes to 3000H and BX changes to 127AH.

The Direction Flag

The direction flag (D) (located in the flag register) selects the auto-increment (D = 0) or the auto-decrement (D =
1) operation for the DI and SI registers during string operations. The direction flag is used only with the string in-
structions. The CLD instruction clears the D flag (D = 0) and the STD instruction sets it (D = 1). Therefore, the
CLD instruction selects the auto-increment mode (D = 0) and STD selects the auto-decrement mode (D=1).

Whenever a string instruction transfers a byte, the contents of DI and/or SI increment or decrement by 1. If a
word is transferred, the contents of DI and/or SI increment or decrement by 2. Only the actual registers used by the
string instruction increment or decrement. For example, the STOSB instruction uses the DI register to address a
memory location. When STOSB executes, only DI increments or decrements without affecting SI. The same is true
of the LODSB instruction, which uses the SI register to address memory data. LODSB only increments/decrements
SI without affecting DI.

DI and SI

During the execution of a string instruction, memory accesses occur through either or both of the DI and SI regis-
ters. The DI offset address accesses data in the extra segment for all string instructions that use it. The SI offset ad-
dress accesses data, by default, in the data segment. The segment assignment of SI may be changed with a segment
override prefix, as described later in this chapter. The DI segment assignment is always in the extra segment when
a string instruction executes. This assignment cannot be changed. The reason that one pointer addresses data in the



104 CHAPTER 4 DATA MOVEMENT INSTRUCTIONS

TABLE 4-10 Forms of the LODS instruction.

Assembly Language Operation
LODSB AL = DS:[SI}; SI=SI +1
LODSW AX =DS:[SI}; SI=SI+2
LODSD EAX = DS:[SI}; SI =Sl + 4
LODS LIST AL = DS:[SI]; Sl = Sl + 1 (if LIST is a byte)
LODS DATAT1 AX = DS:[SI], S| = S| + 2 (if DATA1 is a word)

Note: The segment can be overridden with a segment override prefix as in LODS
ES:DATAA4.

extra segment and the other in the data segment is so the MOVS instruction can move 64K bytes of data from one
segment of memory to another.

LODS

The LODS instruction loads AL, or AX, with data stored at the data segment offset address indexed by the SI reg-
ister. After loading AL with a byte, AX with a word, or EAX with a doubleword, the contents of SI increment, if D
=0 or decrement, if D = 1. A 1 is added to or subtracted from SI for a byte-sized LODS, a 2 is added or subtracted
for a word-sized LODS.

Table 410 lists the permissible forms of the LODS instruction. The LODSB (loads a byte) instruction
causes a byte to be loaded into AL, the LODSW (loads a word) instruction causes a word to be loaded into AX.
Although rare, as an alternative to LODSB, and LODSW, the LODS instruction may be followed by a byte-, word-
sized operand to select a byte, or word transfer. Operands are often defined as bytes with DB and as words with
DW. The DB pseudo-operation defines byte(s) and the DW pseudo-operation defines word(s).

Figure 4-16 shows the effect of executing the LODSW instruction if the D flag = 0, SI = 1000H, and DS =
1000H. Here, a 16-bit number stored at memory locations 11000H and 11001H moves into AX. Because D =0
and this is a word transfer, the contents of SI increment by 2 after AX loads with memory data.

STOS

The STOS instruction stores AL, or AX at the extra segment memory location addressed by the DI register.
Table 4-11 lists all forms of the STOS instruction. As with LODS, a STOS instruction may be appended with a B,
or W for byte, or word transfers. The STOSB (stores a byte) instruction stores the byte in AL at the extra segment
memory location addressed by DI. The STOSW (stores a word) instruction stores AX in the extra segment
memory location addressed by DL After the byte (AL), or word (AX) is stored, the contents of DI increments or
decrements.

TABLE 4-11 Forms of the STOS instruction.

Assembly Language Operation
STOSB ES:[DI]=AL; DI=DI£1
STOSW ES:[DI]=AX;DI=DI+2
STOSD ES:[DI] = EAX; DI=DI + 4
STOS LIST ES:[DI] = AL; DI = DI + 1 (if list is a byte)

STOS DATA3 ES:[D!] = AX; Dt = DI £ 2 (if DATAS is a word)




4-4 STRING DATA TRANSFERS 105

Data segment

1FFFF

Ay

" AO 11001
EAX 032 A032 32 11000
\_N——\-\—B
~’\—f'\a
_\_—
ESP
EBP
ESI 1000
EDI 10000
———— |
1000
CS
10000 Y 11000
DS| 1000 ()
bt

FIGURE 4-16  The operation of the LODSW instruction if DS = 1000H, D = 0, 11000H = 32,
and 11001H = AO0. This instruction is shown after AX is loaded from memory, but before Sl in-
crements by 2.

STOS with a REP. The repeat prefix (REP) is added to any string data transfer instruction, except the LODS in-
struction. It doesn’t make any sense to perform a repeated LODS operation. The REP prefix causes CX to decre-
ment by 1 each time the string instruction executes. After CX decrements, the string instruction repeats. If CX
reaches a value of 0, the instruction terminates and the program continues with the next sequential instruction.
Thus, if CX is loaded with a 100, and a REP STOSB instruction executes, the microprocessor automatically re-
peats the STOSB instruction 100 times. Because the DI register is automatically incremented or decremented after
each datum is stored, this instruction stores the contents of AL in a block of memory instead of a single byte of
memory.

Suppose that the STOSW instruction is used to clear the video text display (see Example 4-4). This is
accomplished by addressing video text memory that begins at memory location B800:0000. Each character posi-
tion on the 25-line-by-80-character per line display comprises two bytes. The first byte contains the ASCII-coded
character, and the second contains the color and attributes of the character. In this example, AL is the ASCII-coded
space (20H) and AH is the color code for white text on a black background (07H). Notice how this program uses a

count of 25 * 80 and the REP STOSW instruction to clear the screen with ASCII spaces.
‘ The operands in a program can be modified by using arithmetic or logic operators such as multiplication (*).
Other operators appear in Table 4-12.



106 CHAPTER 4 DATA MOVEMENT INSTRUCTIONS

TABLE 4-12 Common operand operators.

Operator Example Comment
+ MOV AL,6+3 Copies 9 into AL
- MOV AL,8-2 Copies 6 into AL
* MOV AL,4*3 Copies 12 into AL
/ MOV AX,12/5 Copies 2 into AX (remainder is lost)
MOD MOV AX, 12 MOD 7 Copies 5 into AX (quotient is lost)
AND MOV AX,12 AND 4 Copies 4 into AX (1100 AND 0100 = 0100)
OR MOV AX,12 OR 1 Copies 13 into AX (1100 OR 0001 = 1101)
NOT MOV AL,NOT 1 Copies 254 into AL (0000 0001 NOT equals 1111 1110 or 254)
EXAMPLE 44
.MODEL TINY ;select TINY model
0000 .CODE ;start of CODE segment
. STARTUP ;start of program
0100 FC CLD ;select increment mode
0101 B8 B800 MOV AX,0B800OH ;address segment B800
0104 B8E CO MOV ES,AX
0106 BF 0000 MOV DI, O ;address offset 0000
0109 B9 07D0 MOV CX,25*80 ;load count
010C B8 0720 MOV AX,0720H ;load data
010F F3/AB REP STOSW ;clear the screen
.EXIT ;exit to DOS
END ;end of file

The REP prefix precedes the STOSW instruction in both assembly language and hexadecimal machine lan-
guage. In machine language, the F3H is the REP prefix and ABH is the STOSW opcode.

If the value loaded to AX is changed to 0731H, the video display fills with white ones on a black background.
If AX is changed to 0132H, the video display fills with blue twos on a black background. By changing the value
loaded to AX, the display can be filled with any character and any color combination. More information on accessing
the video display appears in a later chapter.

MOVS

One of the more useful string data transfer instructions is MOVS because it transfers data from one memory loca-
tion to another. This is the only memory-to-memory transfer allowed in the 8086—Pentium 4 microprocessors. The
MOVS instruction transfers a byte, or word from the data segment location addressed by SI to the extra segment lo-
cation addressed by DI. As with the other string instructions, the pointers then increment or decrement, as dictated
by the direction flag. Table 4-13 lists all the permissible forms of the MOVS instruction. Note that only the source
operand (SI), located in the data segment, may be overridden so that another segment may be used. The destination
operand (DI) must always be located in the extra segment.

Suppose that the video display needs to be scrolled up one line. Because we now know the location of the
video display, a repeated MOVSW instruction can be used to scroll the video display up a line. Example 4-5 lists a
short program that addresses the video text display, beginning at location B800:0000 with the DS:SI register com-
bination and location B800:00A0 with the ES:DI register combination. Next, the REP MOVSW instruction is exe-
cuted 24 * 80 times to scroll the display up a line. This is followed by a sequence that addresses the last line of the
display so it can be cleared. The last line is cleared in this example by storing spaces on a black background. The last
line could be cleared by changing only the ASCII code to a space, without modifying the attribute, by reading the



4-5 MISCELLANEOUS DATA TRANSFER INSTRUCTIONS 107

TABLE 4-13 Forms of the MOVS instruction.

‘ Assembly Language Operation
MovsB ES:[DI) = DS:[SI}; DI=Di+ 1; SI = Sl £ 1 (byte transferred)
MOvVSsw ES:(DI] = DS:[SI]; DI = DI + 2; Sl = Si + 2 (word transferred)
MOVS BYTE1,BYTE2 ES:[DI] = DS:[SI}; DI =Dl + 1; Sl = Sl + 1 (if BYTE1 and BYTE2
are bytes)
MOVS WORD1,WORD2 ES:[DI] = DS:[SI]; DI = DI £+ 2, SI = Sl + 2 (if WORD1 and
WORD2 are words)

code and attribute into a register. Once in a register, the code is modified, and both the code and attribute are stored
in memory.

EXAMPLE 4-5
.MODEL TINY ;select TINY model
0000 .CODE ;indicate start of CODE segment
. STARTUP ;indicate start of program
0100 FC CLD ;select increment
0101 B8 B80O MOV AX, 0B800OH ;load ES and DS with B800
0104 B8E CO MOV ES, AX
0106 8E D8 MOV DS, AX
0108 BE 00A0 MOV SI,160 ;address line 1
010B BF 0000 MOV DI,O0 ;address line 0
010E B9 0780 MOV CX,24*80 ;load count
0111 F3/A5 REP MOVSW iscroll screen
0113 BF 0F00 MOV DI, 24*80*2 ;clear bottom line
0116 B9 0050 MOV CX, 80
0119 B8 0720 MOV AX,0720H
011C F3/AB REP STOSW
.EXIT ;exit to DOS
END ;end of file

4-5  MISCELLANEQOUS DATA TRANSFER INSTRUCTIONS

Don’t be fooled by the term miscellaneous; these instructions are used in programs. The data transfer instructions de-
tailed in this section are XCHG, LAHF, SAHF, XLAT, IN, and OUT. Because the miscellaneous instructions are not
used as often as a MOV instruction, they have been grouped together and represented in this section.

XCHG

The XCHG (exchange) instruction exchanges the contents of a register with the contents of any other register or
memory location. The XCHG instruction cannot exchange segment registers or memory-to-memory data. Exchanges are
byte-, word-, or doubleword-sized (80386 and above), and use any addressing mode discussed in Chapter 3, except im-
mediate addressing. Table 4-14 shows some examples of the XCHG instruction.

The XCHG instruction, using the 16-bit AX register with another 16-bit register, is the most efficient exchange.
This instruction occupies one byte of memory. Other XCHG instructions require two or more bytes of memory, de-
pending on the addressing mode selected.



108 CHAPTER4 DATA MOVEMENT INSTRUCTIONS

TABLE 4-14 Forms of the XCHG instruction.

Assembly Language Operation
XCHG AL, CL Exchanges the contents of AL with CL
XCHG CX, BP Exchanges the contents of CX with BP

XCHG AL, DATA2 Exchanges the contents of AL with data segment memory location DATA2

When using a memory addressing mode and the assembler, it doesn’t matter which operand addresses memory.
The XCHG AL, [DI] instruction is identical to the XCHG [DI], AL instruction, as far as the assembler is concerned.

LAHF and SAHF

The LAHF and SAHF instructions are seldom used because they were designed as bridge instructions. These in-
structions allowed 8085 (an early 8-bit microprocessor) software to be translated into 8086 software by a transla-
tion program. Because any software that required translation was probably completed many years ago, these
instructions have little application today. The LAHF instruction transfers the rightmost eight bits of the flag reg-
ister into the AH register. The SAHF instruction transfers the AH register into the rightmost eight bits of the flag
register.

XLAT

The XLAT (translate) instruction converts the contents of the AL register into a number stored in a memory table.
This instruction performs the direct table lookup technique often used to convert one code to another. An XLAT
instruction first adds the contents of AL to BX to form a memory address within the data segment. It then copies
the contents of this address into AL. This is the only instruction that adds an 8-bit number to a 16-bit number.
Suppose that a 7-segment LED display lookup table is stored in memory at address TABLE. The XLAT in-
struction then translates the BCD number in AL to a 7-segment code in AL. Example 4-6 provides a short program
that converts from a BCD code to a 7-segment code. Figure 4-17 shows the operation of this example program if
TABLE = 1000H, DS = 1000H, and the initial value of AL = 05H (a 5 BCD). After the translation, AL = 6DH.

EXAMPLE 4-6
;Using an XLAT to convert from BCD to 7-segment code
.MODEL SMALL ;select SMALL model
0000 .DATA ;start of DATA segment
0000 3F 06 5B 4F TABLE DB 3FH, 6, 5BH, 4FH ;7-segment lookup table
0004 66 6D 7D 27 DB 66H, 6DH, 7DH, 27H
0008 7F 6F DB 7FH, 6FH
000A 00 CODE7 DB ? ;reserve for result
0000 .CODE ;start of CODE segment
. STARTUP ;start of program
0017 BO 04 MOV AL, 4 ;load test data
0019 BB 0000 R MOV BX,OFFSET TABLE ;address lookup table
001C D7 XLAT ;convert to 7-segment
001D A2 000A R MOV CODE7,AL ;save 7-segment code
.EXIT ;exit to DOS
END ;end of file
IN and OUT

Table 415 lists the forms of the IN and OUT instructions, which perform 1/O operations. Notice that the contents
of AL, or AX are transferred only between the I/O device and the microprocessor. An IN instruction transfers data
from an external /O device to AL, or AX; an OUT transfers data from AL, or AX to an external /O device.



4-5 MISCELLANEOUS DATA TRANSFER INSTRUCTIONS 109

EAX 05 05 11006
" 6 D 11005 <—o0

EBX 10 00 1000 11004

11003

11002

1005 11001

cs 11000

]
y
10000

11005 10000

FIGURE 4-17 The operation of the XLAT instruction at the point just before 6DH is loaded
into AL.

TABLE 4-15 IN and OUT instructions.

Assembly Language Operation
IN AL,p8 8-bits are input to AL from 1/O port p8
IN AX,p8 16-bits are input to AX from I/O port p8
IN AL,DX 8-bits are input to AL from I/O port DX
IN AX,DX 16-bits are input to AX from I/O port DX
OUT p8,AL 8-bits are output from AL to I/O port p8
OUT p8,AX 16-bits are output from AX to I/O port p8
OUT DX,AL 8-bits are output from AL to I/O port DX
OUT DX,AX 16-bits are output from AX to I/O port DX

Note: p8 = an 8-bit I/O port number and DX = the 16-bit port address held in DX.

Two forms of I/O device (port) addressing exist for IN and OUT: fixed-port and variable-port. Fixed-port
addressing allows data transfer between AL or AX using an 8-bit I/O port address. It is called fixed-port
addressing because the port number follows the instruction’s opcode. Often, instructions are stored in a ROM. A
fixed-port instruction stored in a ROM has its port number permanently fixed because of the nature of read-only
memory. A fixed-port address stored in a RAM can be modified, but such a modification does not conform to good
programming practices.

The port address appears on the address bus during an I/O operation. For the 8-bit fixed-port I/O instruc-
tions, the 8-bit port address is zero-extended into a 16-bit address. For example, if the IN AL.6AH instruction
executes, data from I/O address 6AH are input to AL. The address appears as a 16-bit 006AH on pins A0-A15 of
the address bus. Note that Intel reserves the last 16 /O ports for use with some of its peripheral components.

Variable-port addressing allows data transfers between AL, AX, and a 16-bit port address. It is called vari-
able-port addressing because the I/O port number is stored in register DX, which can be changed (varied) during
the execution of a program. The 16-bit I/O port address appears on the address bus pin connections AO~A15. The
IBM PC uses a 16-bit port address to access its /O space. The I/O space for a PC is located at /O port
0000H-03FFH. Note that some plug-in adapter cards may use I/O addresses above O3FFH.



110 CHAPTER 4 DATA MOVEMENT INSTRUCTIONS

Figure 418 illustrates the execution of the OUT 19H,AX instruction, which transfers the contents of AX to
/O port 19H. Notice that the I/O port number appears as a 0019H on the 16-bit address bus and that the data from
AX appears on the data bus of the microprocessor. The system control signal IOWC (/O write control) is a logic
zero to enable the I/O device.

A short program that clicks the speaker in the personal computer appears in Example 4-7. The speaker is
controlled by accessing I/O port 61H. If the rightmost two bits of this port are set (11) and then cleared (00), a click
is heard on the speaker. Note that this program uses a logical OR instruction to set these two bits and a logical
AND instruction to clear them. These logic operation instructions are described in Chapter 5. The MOV
CX,4000H instruction, followed by the LOOP L1 instruction, is used as a time delay. If the count is increased, the
click will become longer; if shortened, the click will become shorter.

EXAMPLE 4-7
.MODEL TINY ;select TINY model
0000 .CODE ;indicate start of code segment
.STARTUP ;indicate start of program
0100 E4 61 IN AL, 61H ;read port 61H
0102 0C 03 OR AL,3 ;set rightmost two bits
0104 E6 61 ouT 61H,AL ;speaker is on
0106 B9 1000 MOV CX,1000H ;delay count
0109 Ll:
0109 E2 FE LOOP Ll ;time delay
010B E4 61 IN AL,61H ;read port 61H
010D 24 FC AND AL, OFCH ;clear rightmost two bits
010F E6 61 ouT 61H,AL . ;speaker is off
JEXIT ;exit to DOS
END ;end of file

Microprocessor-based system

(Port data)
Contents of register AX Data bus (D0-D15)
(Port address)
0019H Address bus (A0-A15)
Port control J—
( ° ) » IOWC

FIGURE 4-18 The signals found in the microprocessor-based system for an OUT 19H,
AX instruction.



4-6 SEGMENT OVERRIDE PREFIX 111

TABLE 4-16 Instructions that include segment override prefixes.

Assembly Language Segment Accessed Default Segment
MOV AX,DS:[BP] Data Stack

MOV AX,ES:[BP] Extra Stack

MOV AX,SS:[DI] Stack Data

MOV AX,CS:LIST Code Data

MOV AXES:[S]] Extra Data

LODS ES:DATA1 Data Extra

4-6 SEGMENT OVERRIDE PREFIX

The segment override prefix, which may be added to almost any instruction in any memory addressing mode,
allows the programmer to deviate from the default segment. The segment override prefix is an additional byte that
appends the front of an instruction to select an alternate segment register. About the only instructions that cannot be
prefixed are the jump and call instructions that must use the code segment register for address generation.

For example, the MOV AX, [DI] instruction accesses data within the data segment by default. If required by
a program, this can be changed by prefixing the instruction. Suppose that the data are in the extra segment instead
of in the data segment. This instruction addresses the extra segment if changed to MOV AX, ES:[DI].

Table 4-16 shows some altered instructions that address different memory segments that are different from
normal. Each time an instruction is prefixed with a segment override prefix, the instruction becomes one byte
longer. Although this is not a serious change to the length of the instruction, it does add to the instruction’s execu-
tion time. It is usually customary to limit the use of the segment override prefix and remain in the default segments
so that shorter and more efficient software can be written.

4-7  ASSEMBLER DETAIL

The assembler! for the microprocessor can be used in two ways: (1) with models that are unique to a particular as-
sembler, and (2) with full segment definitions that allow complete control over the assembly process and are uni-
versal to all assemblers. This section of the text presents both methods, and explains how to organize a program’s
memory space by using the assembler. It also explains the purpose and use of some of the more important direc-
tives used with this assembler. Appendix A provides additional detail about the assembler.

Directives

Before the format of an assembly language program is discussed, some details about the directives (pseudo-oper-
ations) that control the assembly process must be learned. Some common assembly language directives appear in
Table 4-17. Directives indicate how an operand or section of a program is to be processed by the assembler. Some
directives generate and store information in the memory, while others do not. The DB (define byte) directive
stores bytes of data in the memory, while the BYTE PTR directive never stores data. The BYTE PTR directive in-
dicates the size of the data referenced by a pointer or index register.

Note that the assembler by default accepts only 8086/8088 instructions, unless a program is preceded by the
.386 or .386P directive or one of the other microprocessor selection switches. The .386 directive tells the assem-
bler to use the 80386 instruction set in the real mode, while the .386P directive tells the assembler to use the 80386

'The assembler used throughout this text is the Microsoft MACRO assembler MASM, version 6.X



112 CHAPTER 4 DATA MOVEMENT INSTRUCTIONS

TABLE 4-17 Common assembier directives.

Directive Function
.286 Selects the 80286 instruction set; default is 8086
.386 Selects the 80386 instruction set
.486 Selects the 80486 instruction set
.586 Selects the Pentium instruction set
.287 Selects the 80287 math coprocessor
.387 Selects the 80387 math coprocessor
EXIT Exits to DOS
.MODEL Selects the programming model
.STARTUP Indicates the start of the program when using program models
ASSUME Informs the assembler of the name of each segment for full segment definitions
BYTE indicates byte-sized, as in BYTE PTR
DB Defines byte(s) (8-bits)
DD Defines doubleword(s) (32-bits)
DQ Defines quadword(s) (64-bits)
DT Defines ten byte(s) (80-bits)
DUP Generates duplicates
DW Defines word(s) (16-bits)
DWORD Indicates doubleword-sized, as in DWORD PTR
END Ends a program file
ENDM Ends a macro sequence
ENDP Ends a procedure
ENDS Ends a segment or data structure
EQU Equates data to a label
FAR Defines a far pointer
MACRO Designates the start of a macro sequence
NEAR Defines a near pointer
OFFSET Specifies an offset address
ORG Sets the origin within a segment
PROC Starts a procedure
PTR Designates a pointer
SEGMENT Starts a segment
STACK Starts a stack segment
STRUC Defines the start of a data structure
WORD Indicates word-sized, as in WORD PTR

protected mode instruction set. Most software is written assuming that the microprocessor is an 80386 or newer, s0
the .386 switch is often used. Windows 95 was the first major operating system to use a 32-bit architecture that
conforms to the 80386.

Storing Data in a Memory Segment. The DB (define byte), DW (define word), and DD (define doubleword)
directives, first presented in Chapter 1, are most often used with the microprocessor to define and store memory
data. If a numeric coprocessor executes software in the system, the DQ (define quadword) and DT (define ten
bytes) directives are also common. These directives label a memory location with a symbolic name and indicate
its size.

Example 4-8 shows a memory segment that contains various forms of data definition directives. It also
shows the full segment definition with the first SEGMENT statement to indicate the start of the segment and its



4-7 ASSEMBLER DETAIL 113

symbolic name. Alternately, as in past examples in this and prior chapters, the SMALL model can be used with the
.DATA statement. The last statement in this example contains the ENDS directive, which indicates the end of the
segment. The name of the segment (LIST_SEG) can be anything that the programmer desires to call it. This allows
a program to contain as many segments as required.

EXAMPLE 4-8
;Using the DB, DW, and DD directives

0000 LIST_SEG SEGMENT
0000 01 02 03 DATAL DB 1,2,3 ;define bytes
0003 45 DB 45H 1hexadecimal
0004 41 DB ‘A’ ;ASCII
0005 FO DB 11110000B ;binary
0006 000C 000D DATA2 DW 12,13 ;define words
000A 0200 DW LIST1 ;symbolic
000C 2345 DW 2345H +hexadecimal
000E 00000300 DATA3 DD 300H ihexadecimal
0012 4007DF3B DD 2.123 ;real
0016 544269E1 DD 3.34E+12 ;real
001A 00 LISTA DB ? ;reserve 1 byte
001B 000A[ LISTB DB 10 DUP (?) ;reserve 10 bytes

27

]

0025 00 ALIGN 2 iset word boundary
0026 0100¢( LISTC DwW 100H DUP (0) ;iword array

0000

]

0226 0016[ LIST_9 DD 22 DUP (?) ;doubleword array

2?22?2222

]

027E 0064[ SIXES DB 100 DUP (6) ;byte array

06

]

02E2 LIST_SEG ENDS .

Example 4-8 shows various forms of data storage for bytes at DATA1. More than one byte can be de-
fined on a line in binary, hexadecimal, decimal, or ASCII code. The DATA? label shows how to store various
forms of word data. Doublewords are stored at DATA3; they include floating-point, single-precision real num-
bers.

Memory is reserved for use in the future by using a ? as an operand for a DB, DW, or DD directive.
When a ? is used in place of a numeric or ASCII value, the assembler sets aside a location and does not ini-
tialize it to any specific value. (Actually, the assembler usually stores a zero into locations specified with a ?).
The DUP (duplicate) directive creates an array, as shown in several ways in Example 4--8. A 10 DUP (?) re-
serves 10 locations of memory, but stores no specific value in any of the 10 locations. If a number appears
within the () part of the DUP statement, the assembler initializes the reserved section of memory with the data
indicated. For example, the DATA1 DB 10 DUP (2) instruction reserves 10 bytes of memory for array DATA1
and initializes each location with a 02H.

The ALIGN directive, used in this example, makes sure that the memory arrays are stored on word boundaries.
It is important that word-sized data are placed at word boundaries and doubleword-sized data are placed at double-
word boundaries. If not, the microprocessor spends additional time accessing these data types. A word stored at an
odd-numbered memory location takes twice as long to access as a word stored on an even-numbered memory loca-
tion. Note that the ALIGN directive cannot be used with memory models because the size of the model determines



114 CHAPTER4 DATA MOVEMENT INSTRUCTIONS

the data alignment. If all doubleword data are defined first, followed by word and then byte-sized data, the ALIGN
statement is not necessary to align data correctly.

ASSUME, EQU, and ORG. The equate directive (EQU) equates a numeric, ASCIL, or label to another label.
Equates make a program clearer and simplify debugging. Example 4-9 shows several equate statements and a few
instructions that show how they function in a program.

EXAMPLE 4-9

;Using equate directive

= 000A TEN EQU 10
= 0009 NINE EQU 9

0000 BO OA MOV AL, TEN
0002 04 09 ADD AL,NINE

The THIS directive always appears as THIS BYTE, THIS WORD, or THIS DWORD. In certain cases, data
must be referred to as both a byte and a word. The assembler can only assign either a byte or a word address to a
label. To assign a byte label to a word, use the software listed in Example 4-10.

EXAMPLE 4-10

;Using the THIS and ORG directives
0000 EATA_SEG SEGMENT
0100 ORG 100H
= 0100 DATAl EQU THIS BYTE
0100 0000 DATA2 DW ?
0102 DATA_SEG ENDS
0000 CODE_SEG SEGMENT '‘CODE’

ASSUME CS:CODE_SEG, DS:DATA_SEG

0000 8A 1E 0100 R MOV BL, DATAl
0004 Al 0100 R MOV AX, DATA2
0007 8A 3E 0101 R MOV BH,DATAl+1
000B CODE_SEG ENDS

This example also illustrates how the ORG (origin) statement changes the starting offset address of the data
in the data segment to location 100H. At times, the origin of data or the code must be assigned to an absolute offset
address with the ORG statement. The ASSUME statement tells the assembler what names have been chosen for
the code, data, extra, and stack segments. Without the ASSUME statement, the assembler assumes nothing and
automatically uses a segment override prefix on all instructions that address memory data. The ASSUME state-
ment is only used with full-segment definitions, as described later in this section of the text.

PROC and ENDP. The PROC and ENDP directives indicate the start and end of a procedure (subroutine). These
directives force structure because the procedure is clearly defined. Note that if structure is to be violated for what-
ever reason, use the CALLF, CALLN, RETF, and RETN instructions. Both the PROC and ENDP directives re-
quire a label to indicate the name of the procedure. The PROC directive, which indicates the start of a procedure,
must also be followed with a NEAR or FAR. A NEAR procedure is one that resides in the same code segment as
the program. A FAR procedure may reside at any location in the memory system. Often the call NEAR procedure



4-7 ASSEMBLER DETAIL 115

is considered to be local, and the call FAR procedure is considered to be global. The term global denotes a procedure
that can be used by any program, while local defines a procedure that is only used by the current program. Any la-
bels that are defined within the procedure block are also defined as either local (NEAR) or global (FAR).

Example 4-12 shows a procedure that adds BX, CX, and DX and stores the sum in register AX. Although
this procedure is short and may not be particularly useful, it does illustrate how to use the PROC and ENDP direc-
tives to delineate the procedure. Note that information about the operation of the procedure should appear as a
grouping of comments that show the registers changed by the procedure and the result of the procedure.

EXAMPLE 4-11
;A procedure that adds BX, CX, and DX with the sum
;stored in AX
0000 ADDEM PROC FAR ;start procedure
0000 03 D9 ADD BX, CX
0002 03 DA ADD